

SYNTHESIS AND CHARACTERIZATON OF THE RARE-EARTH ZIRCONATE PYROCHLORE RE2Zr2O7 AND THE κ -RE₂Zr₂O₈PHASES (RE=La, Y, Gd, Pr, Ce and Zr)

<u>Stjepan Šarić^{1*}, Jelena Kojčinović¹, Dalibor Tatar¹, Cora Deák², Andras Sapi², Imre Szenti², Igor Djerdj^{1*}</u>

¹ Department of Chemistry, J. J. Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia ² Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Square 1, 6720 Szeged, Hungary * stjepan.saric@kemija.unios.hr / idjerdj@kemija.unios.hr

INTRODUCTION

Rare-earth metals are commonly used in the formation of zirconates in the form of solid solutions. Mixed Ce-Zr oxides and compounds based on its structure, supply oxygen for the oxidation processes and store oxygen under lean reaction conditions. Tetragonal solid solutions t-Ce0.5Zr0.5O2 and t-La0.1Y0.1Gd0.1Pr0.1Ce0.1Zr0.5O2 were synthesized using a low-cost and environmentally friendly citrate sol-gel route followed by calcination at 600 °C. Solid

RESULTS

All synthesized materials were characterized by the Rietveld refinement of X-ray powder diffraction patterns (Table 1. and Table 2.).

X-ray powder diffraction patterns show that t-Ce0.5Zr0.5O2 and t-La0.1Y0.1Gd0.1Pr0.1Ce0.1Zr0.5O2 contain tetragonal structure since pyrochlore and κ - phases crystallize in cubic crystal system but in different spacegroups (Figure 2.).

solutions were reduced by calcination at 1500 °C in a gaseous mixture of 3% hydrogen in argon, to form pyrochlore phases Ce₂Zr₂O₇ and (La_{0.2}Y_{0.2}Gd_{0.2}Pr_{0.2}Ce_{0.2})₂Zr₂O₇. The last step of phase transformations is the re-oxidation of pyrochlore phases at 600 °C to kappa phases, *κ*-Ce₂Zr₂O₈ and κ-(La_{0.2}Y_{0.2}Gd_{0.2}Pr_{0.2}Ce_{0.2})₂Zr₂O₈, respectively. Structural differences between tetragonal, pyrochlore and kappa forms of synthesized compounds were observed. The reversible exchange of Ce^{4+} to Ce^{3+} and vice versa makes ceria-based materials suitable as catalysts in oxidation reactions. [1,2]

Figure 1. Step-by-step route for the synthesis of different rare-earth zirconate phases

METHODS

The sol-gel method using citric acid as a precursor and nitrate salts of rare earth metals was

Raman spectroscopy was used to complement XRD analysis and to calculate the $Ce^{3+}/$ Ce^{4+} ratio (Figure 3.).

Scanning electron microscopy coupled with Energy-dispersive X-ray spectroscopy (SEM-EDS) was a useful method to inspect the morphology and chemical content of each compound (Figure 4.).

Figure 2. XRD patterns of synthesized rare-earth different phases zirconates

Figure 3. Raman spectrums of synthesized rare-earth different phases zirconates

chosen for the preparation of the initial compounds t-Ce0.5Zr0.5O2 and

t-La_{0.1}Y_{0.1}Gd_{0.1}Pr_{0.1}Ce_{0.1}Zr_{0.5}O₂. Inorganic salts were dissolved in 10 % citric acid and NH₃ (conc.) was added to obtain pH=5 solution. Mixture was heated at 300 °C and well stirred until only a black mass remained. The obtained mass was crushed in a mortar and subjected to the calcination process in a muffle furnace at 600 °C for 8 hours (Figure 1.).

A Carbolate Gero Tube Furnace was used to reduce the obtained compounds to the pyrochlore phases Ce₂Zr₂O₇ and (La_{0.2}Y_{0.2}Gd_{0.2}Pr_{0.2}Ce_{0.2})₂Zr₂O₇, under nitrogen flow and 3% hydrogen in argon atmosphere, respectively.

 κ -phases, κ -Ce₂Zr₂O₈ and κ -(La_{0.2}Y_{0.2}Gd_{0.2}Pr_{0.2}Ce_{0.2})₂Zr₂O₈, were obtained by calcination process in a muffle furnace at 600 °C for 4 hours.

Table 1. Rietveld analysis of pyr-Ce₂Zr₂O₇ and κ -Ce₂Zr₂O₈ XRD

Compound	<i>pyr</i> -Ce ₂ Zr ₂ O ₇	κ-Ce ₂ Zr ₂ O ₈
Crystal system	Cubic	
Space group	Fd–3m	P2 ₁ 3
a (Á)	10.73	10.56
V (Á̂³)	1236.17	1178.38
Z	8	1
R _p , R _{wp} , R _e	27.0, 21.7, 8.52	19.5, 14.3, 5.9
χ²	6.5	5.8
Calculated density (g/cm ³)	6.176	6.659
Phase composition (wt.%)	100	
Average crystallite size (nm)	33.12	82.58
Average microstrain (×10 ⁻⁴)	8.79	4.23

Table 2. Rietveld analysis of *pyr*-LYPGCZr₂O₇ and κ-LYPGCZr₂O₈ XRD

Compound	<i>pyr</i> -LYPGCZr ₂ O ₇	к-LYPGCZr ₂ O ₈
Crystal system	Cubic	
Space group	Fd–3m	P2 ₁ 3
a (Á)	10.6673	10.6173
V (Á̂³)	1213.86	1196.87
Z	8	1
R _p , R _{wp} , R _e	28.0 22.0 5.94	24.9 17.7 6.12
X ²	13.67	8.376
Calculated density (g/cm ³)	6.289	6.556
Phase composition (wt.%)	100	
Average crystallite size (nm)	38.66	62.33
Average microstrain (×10 ⁻⁴)	4.47	4.23

Figure 4. SEM images of Ce-Zr based pyrochlore and kappa phase (left) and La, Y, Pr, Gd, Ce, Zr based (right)

CONCLUSIONS

Rietveld analysis of XRD patterns showed that synthesized zirconates crystallize in tetragonal and cubic crystal systems in different space groups. Using Raman spectroscopy, it was proven that Ce^{3+} ions are contained in the pyrochlore phase, which is manifested by the strength of the signal at 2100 cm^{-1} . The reversible exchange of Ce^{4+} to Ce^{3+} and vice versa makes ceria-based materials

suitable as catalysts in oxidation reactions.

[1] S. Urban et al., Appl. Catal. B-Environ. **197** (2016) 23-34.

