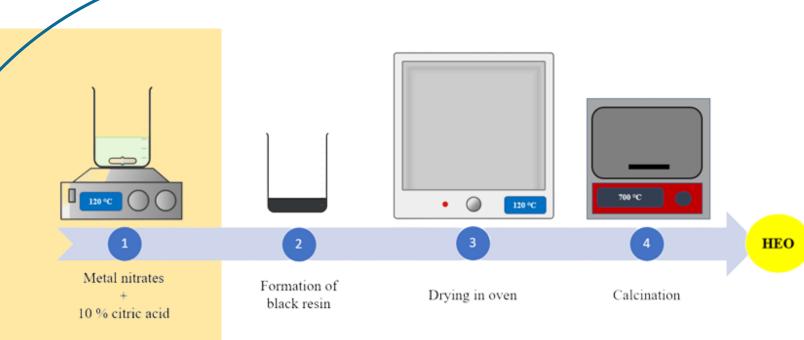
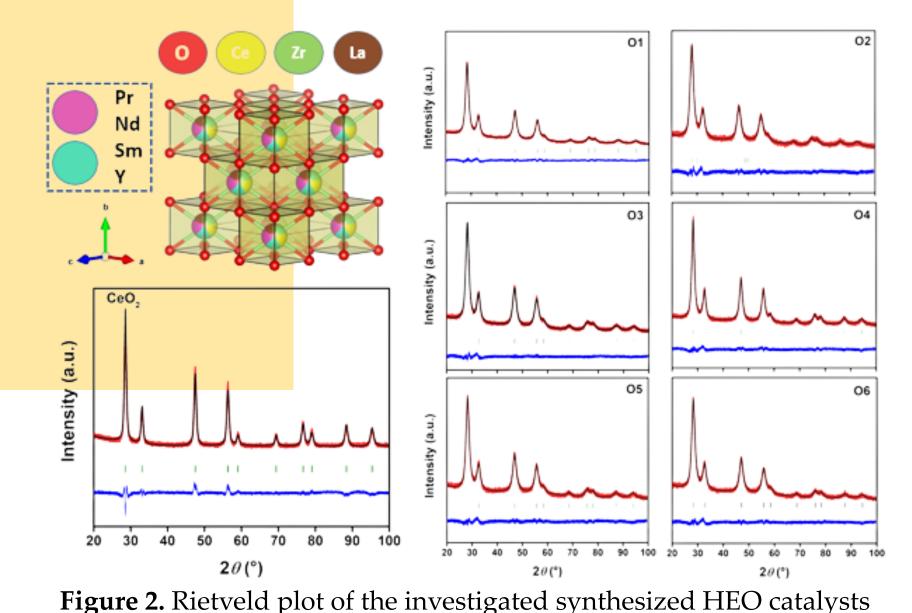

Photocatalytic CO₂ Hydrogenation Using Ceria–Based High Entropy Oxide Photocatalysts

Dalibor Tatar^{1*}, Jelena Kojčinović¹, Stjepan Šarić¹, Mohit Yadav², Imre Szenti², Andras Sapi², Igor Djerdj^{1*}

¹Department of Chemistry, University J. J. Strossmayer Osijek, Cara Hadrijana 8/A, 31 000 Osijek, Croatia; ² Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla Sq. 1, 6720 Szeged, Hungary

dtatar@kemija.unios.hr igor.djerdj@kemija.unios.hr




Introduction

Results

Photocatalytic CO₂ conversion is a promising clean technology for reducing greenhouse gases in the atmosphere. A semiconductor photocatalyst absorbs light and converts CO₂ via various pathways, resulting in different products. However, for photocatalytic CO₂ conversion to be possible, the photocatalyst must possess specific qualities, such as appropriate bandgap, band structure etc. Even though there are many photocatalysts available nowadays, it is crucial to continue searching for new and highly active photocatalyst materials to achieve practical applications. The study of high entropy oxides (HEOs) has emerged as a rapidly growing and dynamic field within material science. These materials, consisting of a mixture of various elements in single-phase compounds, are known for their unique properties and crystal structures due to their high configurational entropy. In this research, six ceria-based high entropy oxides were prepared using environmentally friendly sol-gel citrate route. To better understand the photocatalytic behavior, thorough structural analysis and surface studies were conducted. The catalytic performance of the oxides was performed in a model heterogeneous reaction (Photocatalytic CO₂ hydrogenation), by which we proved their possible application as highly efficient photocatalysts for CO₂ conversion.

Figure 1. Schematic representation of the modified citrate route.

 	I		 	0	 	
	-	-	 -		-	

Compound	Chemical formula
01	$Ce_{0.2}Zr_{0.2}La_{0.2}Pr_{0.2}Y_{0.2}O_2$
O2	$Ce_{0.2}Zr_{0.2}La_{0.2}Nd_{0.2}Sm_{0.2}O_2$
O3	$Ce_{0.2}Zr_{0.2}La_{0.2}Pr_{0.2}Nd_{0.2}O_2$
O4	$Ce_{0.2}Zr_{0.2}La_{0.2}Pr_{0.2}Sm_{0.2}O_2$
O5	$Ce_{0.2}Zr_{0.2}La_{0.2}Nd_{0.2}Y_{0.2}O_2$
O6	$Ce_{0.2}Zr_{0.2}La_{0.2}Sm_{0.2}Y_{0.2}O_2$

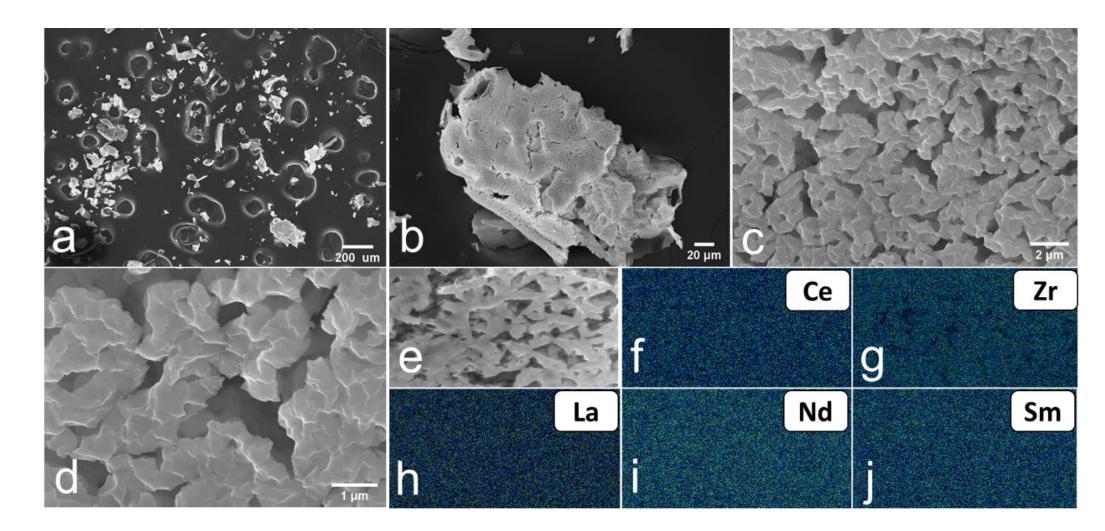
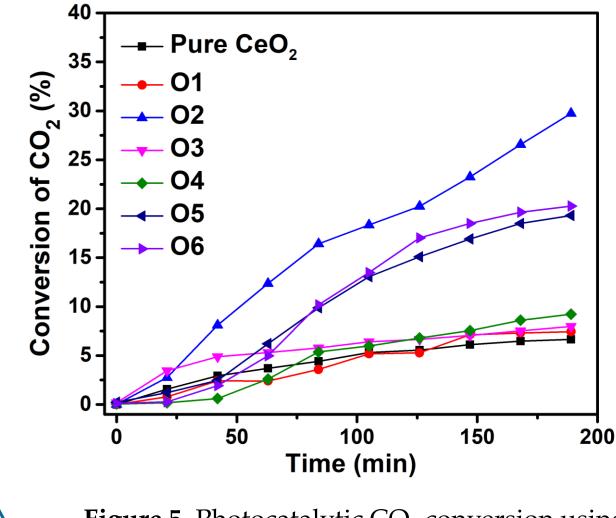


Figure 3. (a–d) SEM images under low and high magnification of O2 catalyst; (e) SEM image under high magnification used for EDS mapping; (f–j) Elemental maps of O2 catalyst shows the uniform distribution of cations.


Conclusions

In terms of photocatalytic activity, the results show that O2 has the highest CO_2 conversion efficiency, which is 4.47 times higher than that of pure CeO₂. O1 has a moderate photocatalytic activity with a 1.12 times improvement compared to pure CeO₂, while O5 and O6 have slightly lower photocatalytic activity than O2. The results of this research have shown that the catalytic properties of high entropy oxides can be tuned by selecting the appropriate constituents. Specifically, we found that ceria-based high entropy oxides have great potential as photocatalysts for CO₂ hydrogenation reaction, when tuned correctly. Our research provides a foundation for further exploration of high entropy oxides as potential photocatalysts for CO₂ hydrogenation, which have significant implications for could addressing climate change. We hope that our findings will motivate further investigation and development of high entropy oxides for this application, and that this research will help to place high entropy oxides at the forefront of

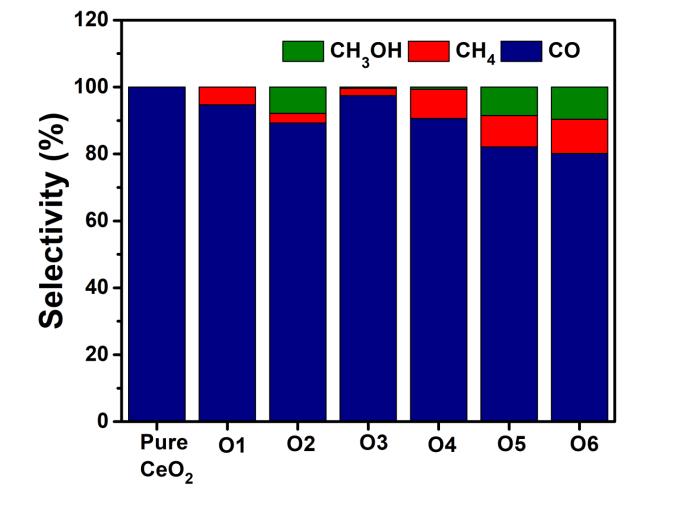

with visualized fluorite-type crystal structure.

Table 2. Overall results of using ceria–based high entropy oxides for photocatalytic CO₂ hydrogenation, together with material characterization results.

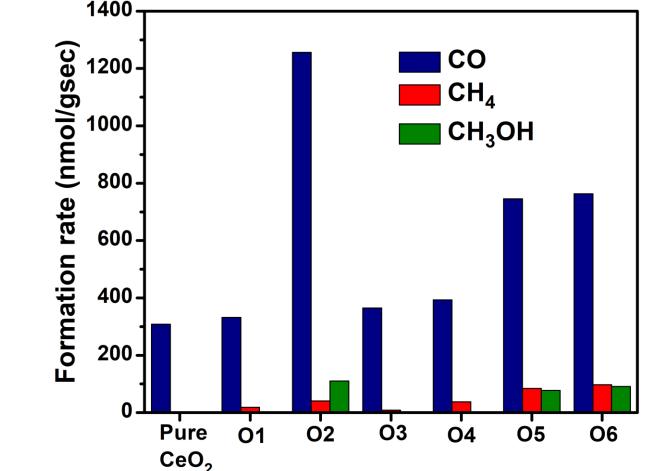

Compound	S _{BET} [m ² g ⁻¹]	Pore size [nm]	Total pore volume [cm ³ g ⁻¹]	Band gap [eV]	Average crystallite size [nm]	Conversion [%]	Formation rate [nmol g ⁻¹ sec ⁻¹]			Selectivity [%]		
							CO	CH_4	CH ₃ OH	CO	CH_4	CH ₃ OH
CeO ₂	21.5	12.1	0.065	3.74	11	6.6	308.1	0	0	100	0	0
01	24.9	10.7	0.067	2.73	4	7.4	332.2	18.7	0	94.6	5.4	0
O2	33.2	14	0.116	3.32	4	29.7	1256.5	4.1	110.3	91.6	0.3	8.1
O3	27.3	13.2	0.09	2.65	4	7.9	364.5	8.2	1.3	97.4	2.2	0.4
O4	24.2	12.9	0.078	2.93	5	9.2	393.1	37.8	2.9	90.6	8.8	0.6
O5	35.7	13.6	0.121	3.37	4	19.3	745.1	84.5	77.5	82.1	9.3	8.6
O6	32	13.9	0.111	3.21	4	20.3	763.3	97.1	91.5	80.2	10.2	9.6

Figure 5. Photocatalytic CO₂ conversion using synthesized high entropy oxides as catalysts, and CeO_2 as parent oxide.

Figure 6. Selectivity of high entropy oxides towards reaction products (final point).

Figure 7. Formation rate of the products using high entropy oxides as photocatalysts.

