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INTRODUCTION SOL-GEL SYNTHESIS

Ce(NH,),(NO,),

Five different rare-earth-based nanocrystalline high entropy oxides (HEOs) with fluorite type of structure and average crystallite sizes between 6 and 8 nm were prepared and Zr(NO,),
their photocatalytic behavior towards AZO dye degradation and photoelectrochemical water splitting for hydrogen generation was examined. The cationic site in the fluorite
lattice consists of five equimolar elements selected from the group of rare-earth elements including La, Ce, Pr, Eu, and Gd and second-row transition metals, Y and Zr. Studied
HEOs exhibit bandgaps in the range from 1.91 eV to 3.0 eV and appropriate valence and conduction bands for water splitting. They reveal high photocatalytic activity that is

mostly attributed to the accessibility of more photocatalytic active sites which provided radicals responsible for the AZO dye degradation. The materials successfully produce
hydrogen by photocatalytic water splitting, suggesting the potential of HEOs as new photocatalysts. The photocatalytic performances of all studied HEOs outperform the single
fluorite oxides or equivalent mixed oxides. The Ce, ,Zr,,La,,Pr,,Y,,0, (CZLPY) engender hydrogen in 9.2 umolmg-! per hour that is much higher content than for pristine CeO,

material which amounts to 0.8 pmolmg-! per hour.
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(a) Normalised absorption spectra for all as-synthesised HEOs; (b) Estimated valence and
conduction positions of HEOs with the position of redox potentials of water splitting CLPEY 24.8 5 76.3 11.9 6 57.50 23.4 17
reactions; (c) Steady state PL spectra of HEOs; (d) Phosphorescence lifetime PL decays of CZLGY 26.2 8.5 0 14.9 6 38.60 61.4 21
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CONCLUSIONS

In summary, we have successfully synthesized five different rare-earth-based high-entropy oxides in nanocrystalline form via a modified aqueous sol-gel route. All examined HEOs represent equimolar 5-cation system selected from the elements: Ce, Zr, La, Pr, Gd, Eu, Y that were
uniformly distributed and demonstrated a single fluorite structure with lattice parameter similar as parent simple oxide Ce0O,. The variation of equimolar chemical composition yielded the band gap variation and modulation of electronic structure. Among studied HEOs,
Ce,,Zr,,La,,Pr,,Y,,0, (CZLPY) has shown the highest photocatalytic activity in AZO dyes degradation and photocatalytic water splitting in hydrogen generation than any other synthesized HEOs due to the presence of optimum level of Pr3*, Ce3* and the highest content of
oxygen vacancies as verified by XPS. Thus, the phase stabilization of high-entropy oxide in parent CeO, lattice induced more lattice distortion, more Ce3* concentration, more oxygen vacancies and additional energy levels (due to more oxidation states of Ce and Pr) as compared to
pure Ce0O,. According to the DFT calculations, the most appropriate model of the crystal structure of CZLPY is the one where O anions are tetrahedrally coordinated with four different (Ce, La, Zr, Pr, Y) cations. The most stable fluorite surface along [111] is verified as a
model/catalyst for Zr, La, Pr; and Y dopants, followed by the interaction with water and MB molecules. Based on experimental findings and theoretical modelling, this work provides a significant step for enhancing the photocatalytic performance of rare-earth-based HEOs.
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